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ABSTRACT

\JA complete, unified description is yiven ot the desiyn,
implementation and use of a family ot very tast and etticient
larye scale minimum~cost (primal simplex) network proyrams.

The class of capacitated generalized transshipment problems
solved includes the capacitated and uncapacitated yeneralized
transportation problems and the continuous generalized assign-
ment problem, as well as the pure network tlow models which are
specializations of these problems. These formulations are used
for a large number of diverse applications to determine how (or
at what rate) flows through the arcs of a network can minimize
total shipment costs. A generalized network problem can also
be viewed as a linear program with at most two non-zero entries
in- each column ot the constraint matrix; this property is ex-
ploited in the mathematical presentation with special emphasis
on data structures for basis representation, basis manipulation,
and pricing mechanisms. A literature review accompanies compu-
tational testing ot pfomising ideas, and extensive experimenta-

tion is reported which has produced GENNET, an extremely etti-

cient family of generalized network systems. (ﬁ_.,\\\\\-
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1.  INTRUDUCTION

This paper reports the development ot a larye-scale primal
network code for solving capacitated yeneralized transshipment
problems, The capacitated yeneralized transshipment problem is
the most general of the minimum cost tlow models in continuous
variables, which include the capacitated and uncapacitated trans-
portation problems and the continuous yeneralized assiynment problem
as well as the pure network specializations ot these problems.
These models are used tor a large number of diverse applications
that include transportation of goods, desiyn ot reservoir, com-
munications, and pipeline systems, assiynment ot personnel ana
machinery to jobs, bid evaluation; currency exchanye and cash
management; production, sales and inventory planning; and many
others. For further discussion of these applications see survey
articles such as Bradley [b], or Glover et al., [17, 18], and
textbooks (as well as their cited reterences) such as Dantzig
[13), Jensen and Barnes [23]), and Kennington and Helgason [27].

The capécitated Qeneralized transshipment model and its
specializations are minimum-cost network flow problems. The
yoal 1is to determine how (or at what rate) tlows through the
arcs ot a network can minimize shipment costs. The network is a
directed graph, G , detined by a set ot nodes, N , and a set ot
arcs, A , with ordered pairs ot nodes (tail, head) as elements
indexed by k: (tk,tk). For each arc there is a shippling cost
per unit flow, C, » A minimum allowable tlow (or lower bound),
Ek , and a maximum allowable tlow (or upper bound, or capacity),

u .
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In addition, there are coefficients (or multipliers, or gains,
or losses), a  and b which can change the magnitude of (or
amplify, or attenuate) each unit of flow respectively entering
and leaving arc k . Each node is either a supply node where
units of the good enter the network, a demand node where units
leave, or a transshipment node. The problem is to minimize
total costs with tlows, Xp v that satisfy the associated lower

and upper bounds and preserve the conservation of flow at each

node:
(GN) MIN § c x
keA kTk
s.t. ax, + ) bx =b,, ieN,
keA =k 7k keA k "k i
with tk=1 with tk=1
Ekixkf_uk, k€é'
where:

supply if i 1is a supply node;
bi = (- demand it 1 1is a demand node;

U otherwise.

Note that any linear proyram with at most two nonzero coefticients
associated with each variable is a generalized network (GN). Fror-
mulation (GN) is a yeneralized transshipment model (GT) if all a,
are +1, in which case the corresponding coefficient is called the

multiplier m = —gk . For purposes of exposition, we will address
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(GT) since assuming the existence of a finite upper bound on each
variable. it is possible to transtorm the (GN) coetficients--by
scaling or by retlecting variables with respect to their upper
bounds-~so that one coetficient is +1 tor each variable. The other
coetrticient for each variable then becomes the multiplier value,

m . . and the generalized transshipment (GT) network tlow interpre-
tation results with a node tor each constraint and a directea arc
tor each variable. If a variable has two nonzero coeftticients, its
arc is directed away from the node correspondinyg to the constraint
with the +1 coefticient; a variable with just one nonzero coetticient
(1) corresponds to an arc forming a self-cycle, leaving and
returning to the same. node.

Some generalized networks (GN), such as those obtained by
relaxing integer restrictions on flow variables, cannot 'be scaled
conveniently to (GT). These (GN) are accommodated by obvious minor
moditications in the tollowiny (GT) presentation. We have developed
codes tor solviny (GUN) and specialized them tor (GT) problems.

Generalized networks can be solved as linear proyrammlngy
problems, but contemporary commercial linear proyramming Sys-—
tems consume much more computer time and data storaye reyion
than special purpose network codes. Indeed, the advantaye ot
network codes is so pronounced that it is even worthwhile to
develop special linear proyramming procedures to exploit intrin-
sic network structure found embedded within more general models
(e.g., Kenninyton and Helgason [27], McBride [3U], Brown and Graves
{8], and Brown and McHBride [Y]). Brown and wright [ll] and Brown,
McBride and Wood [10]) show that many real-life linear proyrams

contain a larye embedded generalized network structure,
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These models are widely used because they accurately de-
scribe a large variety of important applications. Generalized

networks not only directly represent gains with m >1 (e.g.

,v v » N
I“I"r X

N interest return on investment, heat gain, etc.) and losses with }
g; 0 < m, <1 (e.g., evaporation, voltage drop, attrition, etc.)

ﬁ; in the flows, but also admit conversions of units for these flows

4 (e.g., machine time to output pieces, lira to yen, etc.). In

,} addition, m < 0 represents situations without obvious physical

flow interpretation (e.g., flows which "enter the head" of arc Kk

in proportion m, of those entering the tail), but which nonethe-

»

less provide valuable modelling tools. There has been continuiny

wy £X o

growth of interest in network models because etticient computer

% i 2 2 BT

-

programs have made possible the reliable, economic solution of
problems with more variables than virtually any other optimiza-

tion technique (e.g., the pure network system, GNET [6], has been

A PO X
PR g™

B4
.

installed at hundreds of sites worldwide and is now cited as a

routine research tool). Perhaps most important, networks are

Ea
R g

readily accepted by nonanalysts and are consequently extremely

oL W v
N

pqopular aperations research models.

Although several papers have been written in this general

i
«“a'a

area, and significant computational breakthrouyhs have been

AN

Aatete

reported, there has not previously been a single, unified de-

et 4§

scription of a complete implementation, nor have "new generation"

computer proyrams been made generally available to the academic .

L>
v
5
3

community. Here we report the research and computational experi-

ments which have -roduc- GENNET, an extremely etficient tamily

of network optimizs.ion systems. GENNET exploits pure network

' M NN NPT NI AIRERININN e PRIRTLRY SO A N AN W e



Fo o=

-.'-%.-ﬂi AN

P
N

e

e
.
)

F XA

AR AN

el aRC S ARC A AR St A R a® o et B s B = 0 A B S e e e s | R A AR e i R A A e e A e A

structure embedded in yeneralized networks, and speclalizes in-
trinsically to GNET [b], when both systems are applied to pure
networks, (the floating point arithmetic in) GENNET reguires
about 15 percent more time than GNET. An important objective ot
this paper is to make these new approaches easily accessible to
a wide audience via a clear exposition and concrete examples of
efficient FORTRAN programs. Further, the availability ot the
(GT) and (GN) computer proyrams will now make it possible tor
other investigators to reproduce and extend our experimental
results.

Bradley, Brown and Graves [6] trace the historical develop-
ments leading to contemporary primal simplex pure network alyo-
rithms, their supporﬁing data structures, and etticient imple-
mentations such as GNET. For other sub-classes ot yeneralized
networks, algorithms have been reported by Jewell [25], Eisemann
[14), Maurras [2Y9], Glover, Hultz, Klingman and Stutz [17,1s,1Y],
Balachandran [2], and Jensen and Bhaumik [24]. An etficient
algorithm for large generalized network problems has been ae-
veloped by Glover, Klingman, Hultz, Stutz, Karney and Elam
(15,17,18,21,22]. However, their contributions are scattered
among the papers referenced; Kennington and Helgason [27] and
Jensen and Barnes [23] provide textbook descriptions of compu-
tations apparently gléaned from these papers, providing an ade-
quate treatment of the yraphical alygyorithm with more computational
advice than the seminal presentation by bLantziyg [13] but tew

details ot etticient basis updating.
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W 2., THE APPROACH
2 Our approach continues with ygeneralized networks in pre-
E cisely the philosophical vein of the pure network exposition
R of Bradley, Brown and Graves: we seek data structires and alyo- -
;g: rithms that yield efficient implementations without abandoning
A
fb the flexibility of a general laryge-scale mathematical program-
v ming perspective [6,p. 3 ff]l. We introduce few of the details of
'f the general bounded-variable simplex algorithm, and we repeat
L]
84 . . .
L little of the underlying pure network material; the assiduous
%
reader might well review the prior paper for which this is an
bl .
N intimate companion.
3
':} We continue with a brief description of the algebraic
3
specialization of the simplex method tor generalized networks.
:; Specific design decisions and experiments carried out with GENNET
n,
‘:3 are described, includinyg computational tests ot alternate ap-
~
- proaches. Some extensions of GENNET are presented to further
hee
,2 exploit special problem structure.,
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3. GENERALIZED NETWORK SPECIALIZATION

Efficient primal simplex specialization to the generalized

network case depends upon the well-known result that any
generalized network basis can be put in nearly (upper) tri-
angular form by simple permutation of rows and columns. This
inherent near triangularity can be exploited by direct solution
of’the simplex equations with modified forward, or back substi-
tution. Fortnitously, this basis structure also leads to ex-
tremely fast solution updates orchestrated in concert with
efficient dynamic reorganization of each new basis.

Theorem (e.g., Dantzig [13]) Any basis B extracted from a

generalized network problem can be put in the form (1) by

rearranging rows and columns.

Bt (1)

L
where each syuare submatrix component B 1is either upper

triangular or nearly upper trianyular with only one element

below the diagonal.
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,:ﬂ Proof. Our proof is constructive, We know that the basis has at
4.\ least one nonzero entry in each row, and one, or two,

\':'

‘:? entries in each column. uvefine a pairing as the associ-

SQ ation of a row with a column sharing an entry in B , a

: deferral as a temporary deletion ot a pai. trom consider-
b,/

f&ﬁ ation, and an assignment as the fixing of a pair on the

a4

~
25 diagonal in the ordering of the rearranyed seyuence,
oY,

i followed by the assignment of all deterred pairs which

0.
ﬂﬁ have a column with an entry in an assiyned row.

\-é::

" Step 1) Detfer singleton rows. Locate a row with one entry, pair

> 4
\j ' the row with the column of the entry ana defer the pair,
s
]

:; Repeat Step 1 until no row remains with one entry.

,"_-l
.“‘

‘ Comment: Step 1 reduces B to a submatrix with exactly two
O
.‘..' o . . ]

.ia : entries in each row and in each column. To see this,

Eg note that each column can have at most two entries, or
2m entries for m columns. Each row has at least two
entries. Suppose that some row has more than two
entries; then at least Zm + ] entries exist, leading to
a contradiction. Thus, exactly Zm entries remain;
conseguently, each column has exactly two entries, as
aoes each row.

. Comment: Step 1 deters an upper triangular set of pairs, To
1 see this, diayonalize the pairs in reverse of the order

*

l,”-. . .

ﬁi of their deferral, and place this sequence at the end

o

- of the rearranygyement of B .,

Y

50

. Comment: A seguence of assignments in the rearrangement begins,

-

~
a

~iek

L
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Step 2) Assign a Component.

2.1) If a row remains which is neither assiynea nor deterreaq,

beyin a near triangular component: pair the row and a

column and assiyn this pair next in the rearranged
sequence. Utherwise, go to Step 2.3.

2.2) Apply Step 1 and assign each newly deterred pair next in
the sequence. Go to Step Z.4.

2.3) Begin a triangular component: assiyn the most recently
deferred pair next in the sequence.

2.4) Repeat Step 2 until all rows and columns are assigned.

Comment: If Step 2.1 assigns a pair to a component, then the
component is nearly triangular with one element below
the diagonal in the first column. OUtherwise, the

component is triangular.

Consider the yeneralized network problem yiven in Figure 1,
a yeneralized transshipment problem with 2 sources, lU sinks,
15 nodes, and 30 arcs. Wwe will use this problem to illustrate
concepts and etticient solution methods. 1n this problem the
multipliers are all positive. For arc Kk directed trom node
i to node j , if flow x, leaves node i , then m x,
arrives at node j . When m > 1 the amount arriving at node
j is greater than the amount leaving node i . This would be
the case in cash flow problems when the arc corresponds to an
investment anda m = (1 + r ) with r  the rate of return.
when m_ < 1 then the amount arriving at node 3 1is less than

K
the amount leaving node i . Here the loss could correspond to

an 8 4 v S T _C MMEMAK 4 .t R 4T & AN -
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N evaporation, taxation, transmission loss, brokeraye fees, seepage
P or deterioration. Pure network arcs are indicated by mo =1
X (and may be even more abundant in real problems than in our
. example.). For clarity, minimum allowable flows are zero, and
’ maximum allowable flows are not specified.
-,
2 Arc From To Cost Multiplier
o :
e °x my
» 1 4 3 33.84 .99 ,
N Node Supply 2 Z 3 15.47 1.00 A
o 3 1 5 53.54 .74 :
N }  22.86 4 2 5 26.76 .74
2 177.14 5 3 5 73.49 1.00
v 6 5 5 52.52 1,00 -
) Node Demand 7 3 6 35.12 .91 J
3 8 5 6 11,12 1.00
) 6 19,39 9 4 7 59.56 1.17
] 7 3.64 10 2 7 88.38 1.06
8 24,92 11 4 8 84,12 1.00
. 9 9,38 12 2 8 21.86 .92
: 10 14,07 13 4 9 3.46 1,00
A 11 56,91 14 3 9 29,72 1.00
4 12 2.45 15 4 10 6.12 1.00
v, 13 30,93 16 2 10 31.08 .96
. 14 21.76 17 3 10 1,07 1,07
3 15 16.55 18 5 10 44,44 1,00
. 19 1 11 67.15 .91 X
A 20 2 11 59.83 . 7Y .
‘ 21 3 11 50,46 1.17 X
.: 22 5 11 71.42 1,00 R
- 23 2 12 B.88 1.18
N 24 1 13 28,22 .83 .
K 25 4 13 77.34 1.00 '
- 26 313 45,60 1.00
| 27 5 13 20.67 '88
¥ 28 q 14 37.76 1.13
- 29 2 14 18.16 .98
3U 3 15 67.62 1.00 :
2
;
Figure 1. A Single Commodity Generalized Transshipment _
. Problem (GT) .
> -
1V
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Figure 2 shows a basis for the problem introduced in
Figure 1. (In this simple case, there is only one component:

p = 1.)

A unigque subgraph partition ot & denoted Gy corre-
sponds to b . Let Ay = {ajlaJ is an arc associated with bJd ,
a column ot B} , then Gy = [Q,QB] denotes the directed yraph
associated with the basis B . To each submatrix 8 ot o

there corresponds a component ot &, denoted by 92 = [N",A r
g‘ is the set ot nodes correspondinyg to the rows ot Bl ana Az

is the set ot arcs corresponding to the columns ot Bz . It is

known (e.g., [13]) that gz is either a rooted tree or a one-

tree (a tree with an additional arc forminy one cycle). It gl

is a rooted tree, then Bl is upper triangular. If §£ is a
is a one-tree, then Bz is upper triangular except tor one
element below the diagonal. Each component can be viewed as
having one cycle if we assert that each rooted tree has a selt-
cycle corresponding to its root node.

In our example basis, the subygraph G, has only one com-

B
ponent, (one-tree) shown in tigure 2: G, 1s a one-tree, with

B
nodes 2, 3 ana li composing its cycle.

As in the pure network case, this near trianygyulation and
associated sub-yraph are naturally represented by a predecessor
tunction p( ), and a predecessor graph (which does not preserve
the orientation of arcs in the oriyinal network). The predeces-

sor tunction can be used iteratively to construct the uniyue

backpath from any node to the root (or cycle); the backpath

includes all nodes on the cycle. The immediate successors of a

11 l
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[ ] -.92
14 -.98

12 -1.18 \

?. ~1.06

11 -.79 -1.17

10 : -1.07

13

=91
-1.9

-1.0 -2.0

A Preorder Near-Triangulation
(The underlined coefficient is below the diagonal.)
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one-Tree

Figure 2. A Generalized Transshipment Basis
(For the problem in Figure 1.)
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;S node, if any, are the first nodes encountered on all paths ex-

% cept the backpath to the root, and all the nodes on these paths

;; . are called successors.

J} ' ~Note that each basis may have many near triangulations,

L . However, all such near triangulations yield the same predecessor

g} function and yraph (where the right to lett ordering of succes-

f; sors of any node is immaterial). Thus, the predecessor yraph

M does not completely represent a near triangulation without

:: additional information: an ordering of the rows (nodes). For

?: algebraic reasons, we restrict such partial orderinyg to preorder
[6], in which a node i always precedes its successors, if any

iﬁ and in which all its successors, if any, precede any node which

{: does not precede noée i
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4, IMPLEMENTATION

For didactic reasons, we begin by introducing a complete
primal generalized network algorithm using a preorder traversal
method., Controversial alternatives are deferred until this
paradigm is presented. Hereafter, notation with upper case

roman letters followed by parentheses indicates a proygram data

array. For instance, the predecessor array is referred to as
P( ).
static arc storage is used for tails T( ), heads H( ),
costs C( ), multipliers MUL( ), and capacities CP( ). Contigu-
ous storage by tail, or by head node reduces T( ), or H( ) to
an hierarchical node-length entry point array. (GENNET uses
contiguous storage by head node, as does GNET.) Lower boundas
on-arc flow are translated out prior to solution, with appropri-
ate adjustment of the initial right-hand side of (GT), and of
CP( ). The sign bit of CP( ) is available to indicate arcs
nonbasic at their upper bounds (reflected with flow ~CP( ) ).
The predecessor function and its array P( ) are defined
so that the basic arcs in a cycle are oriented uniformly in a
directed cycle. All basic arcs not on a cycle are oriented so
that a backpath is created to a cycle. To obtain this orienta-
tion the direction of éome arcs must be reversed, and the sign N
bit of the predecessor array is used to indicate: if P(I) < 0,
then the orientation of arc (I, -P(I)) is reversea from its

original orientation.” "

*This is the complement of the aiscipline used in GNET [6].
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A depth array D( ) reveals for each node the number of
nodes on the backpath before encountering a cycle. Nodes on a

cycle have depth zero. Number of successors, or preorder

distance are acceptable substitutes for depth [6], but are not
discussed here.

A preorder traversal array IT( ) is maintained so that all
preorder successors of a cycle node are encountered before
another cycle node. It is convenient to make this a circular
list for each near triangular basis component by setting IT( )
of the last preorder node in the component egual to the first
preorder node in the component.

The components of EB are not inter-connected, or equiva-
lently, the sub-matrices Bz in (1) do not have common rows or
columns. Consequently, the p components of a basis may be
répresented in a single set of node-length arrays.

The array X( ) contains the values of basic variables,
values of dual variables (or simplex multipliers, or node poten-
tials) are stored in U( ), and IVAR( ) gives the location of
basic variables in the arc arrays. The array FAC( ) contains

the cycle factors, defined later. Figure 3 shows these arrays

for the basis yiven in Prigure 2.

Generalized networks do not exhibit totally unimodular
bases. Consequently, floating point representation is required
for X( ), U( ) and FAC( ), and is desirable for arc-length arrays

C{ ), MUL( ), and CP( ).
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ﬁ Node Predecessor Uepth Traversal Basic Variable wDual Cycle Factor
! () D( ) IT( ) IVAR() X( ) u() FAC( )
g 1 13 2 6 24 22,860  16.665 *
- 2 3 0 5 2 118.169 47.148 -.48101
3 11 0 10 21 45,826  31.678  -,48101
4 9 2 2 13 0.0 5.418 *
5 -2 1 8 4 0.0 27.552 *
6 -3 1 15 7 21,308 -3.,782 *
7 -2 1 11 10 3.434 -38.898 *
8 -2 1 14 12 27,087  27.a487 *
9 -3 1 4 14 Y.380 1.958 *
10 -3 1 13 17 13.150  28.606 *
11 -2 0 3 20 4,170 =16,05%3 =-,4810l
12 -2 1 7 23 2,076  32.431 *
13 -3 1 1 26 11,956 -13,922 *
14 -2 1 12 29 22,204 29,580 *
15 -3 1 9 30 16,550 =35,942 *

Figure 3. GENNET Basis Representation Arrays
{for Bas_.~ in Figure 2)
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Step S, Priceout

The reduced cost for nonbasic arc k , oriented from fk

to tk is (given the current dual solution u and column Nk):

= - +
ok T Vg, * U

C(k) - U(fk) + MUL(k)*U(tk) .

(If CP(k) < 0, arc k 1is reflected and the siygn of r, is
reversed.) At most, one multiplication, addition and subtrac-
tion are required. Note that the multiplication is unneccessary
if ngl = 1; further specialization is possible for sets of
priced arcs with common attributes. If arc k 1is a logical arc
(slack, artificial, or surplus variable) then C(k) can be

logically generated, rather than explicitly stored, and

r, = C(k) ¢ U(fk) ’

depending upon the sign of P(fk) .

From the example,

r,; = C(27) = U(S) + MUL(27)*J(13)
= 20,67 = (27.552) + .88(-13.,922)
= -19.133 ,
17




This variable will be used as the entering non-basic variable

for further illustration.

Step 82, Ratio Test

For the determination of the arc to leave the basis the

system of equations

must be solved for the transtormed column Zk . (—Nk is

used if arc Kk 1is reflected.) Due to the near triangularity

of B , this incoming column transformation can be combined

with the ratio test in a single integrated process.

Suppose that Nk has two nonzero coefficients representing
an arc oriented from fk to tk , and that the arc is not
reflected. An apparent complication arises if tk and tk
in separate components of B in (1), say 8% and Bt s respec-

are

tively. 1In this case two disjoint subsystems must be solved and

the results added to determine the nonzero elements in zk .

The subsystems are:
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t is the tkth unit vector; Q k and Q k are disjoint
k

components of Zk

(e
.)
This complication is inconsequential. In order to see

this, consider solving one of the systems:

The only nonzero elements of Q k will be those that correspond

to the nodes in the backpath from node tk « As we shall see,

this follows from the manner in which the coefficient -m

_kln

row tk propagates during substitution solution.

Suppose that gt'is a rooted tree. The backpath from node

t can be denoted by iteration of the predecessor function: ¢t

k k’

p(tk), p(p(tk)),..., root; this sequence is shown below as d,

d-l,...,U, analoyous to the backpath length remaining to the root.

2
Root
bl

p(p(t,)) d-2
by-1
a
p(t,) a-1
b
d
%a
tx
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The values of a and b for each basic arc depend upon the
original orientation of the arc, given by the sign of P( ).
For original orientation, P( ) > 0 implies that a = +1 and b

is the multiplier value, P( ) < U reverses these definitions,

The triangular system corresponding to this backpath is:

By back substitution, its solution is:

X

QQ ag_’

. -b,..q

Qs = S¥L8HL L 5 - g-1,...,0 .
a6 -

Now suppose that gt is a one-tree. Let node t be on the

3

cycle. The backpath is tk ’ p(tk) ’ p(p(tk)), sees C, wWith

p(c) = tk and length p ; this sequence is shown below as

-1,-2,...,-p, analogous to the backpath length beyond the cycle

start.
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The corresponding near triangular system is:

a_, b_p+1 0
a_o+1 0

o - |

a_3 b_, 0

a_pb, 0
b_p a_, ~my,
'.. 0

By modified back substitution, its solution is:

x ’

-1 " a_;

-b q '
- 6+: §+1

s

q6 for §d = "‘2,...,‘9,

where

f-l- l'l';—.
§==1 "¢

21
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The cycle factor (or loop c<actor [13}), £ , is common to all

nodes in the cycle and can be computed when the cycle is
created and stored in FAC( ) for all nodes on the cycle so
that it is immediately available at this step.
Suppose that the entering arc is (fk,tk) with coefticient
entries (ak'bk) and that the fk and tk backpaths coaverge.

Using nomenclature for the backpath sequences introduced above,

the corresponding system is:

o
{{s A { o)
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By back substitution, its solution is:

b
4q = X ’ (d begins t backpath seguence),
< aq - k
=b g
+
q‘S = ——6-—&6&; for § = g,g_-l,...,r ’
a
qQ, = X ' (d beyins £ backpath seguence) ,
d ag k
qa = —6—-’.—;—62 for 6 = d’d-l'.oo,w r
§
-(by4, * byq,)
q - =
-1 an_l
-b q
ds = 6+—; S+l hor 5§ = 8-2,8=3,...,0 .

8

Suppose that entering arc (fk’tk) with coetficients

(ak,bk) enters and that the backpaths converye on a cycle.

corresponding system is:

......

‘The




-p b--s>+1
~ dopt1

3 8_g-1 by »

-£
-; 2
‘:C a"B'l -8 br
g ' -8 .

- -1 .

s T
o
[

S
ad‘ a8
- .. 0
‘ a1: bH—l
. a,, :
a

o bets Sudyly |

>
+
X3
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203
3
2
1998 o . . L
:.-' By modified back substitution, its solution is:
-

b, _ ‘
N . Q, T = (d beyins t, backpath seyguence) , j
! \‘ g_ ad -_— k

N -
ber
+ + ,

..: qc = —6_;'_6—1 for § = _d_'_d_-l'.-o'r,

§

-\'::

N

DA -

E a ) brqr ) 1

- - 14

=0 s-1 a_g_ t
Ly

DA

\.

L]
i‘t’? -b,.; 4

= as = -'_6'12_'_62 for 6 = -S-Z,...,"l,"l-l,...,-s 3
N $

\':-
S
- Qg = 3 ¢ (d peygins t, backpath seyuence) ,

4 d
]

o

\w

- ~-h q
.5 +
“: qa =-—'6_—;—6+-l for $ =d’.no'w I
’

s -

'o a = —bwqw x i
o] £=1  a t '
1 1 —2-1
L,
B

b q

- ~ S+1 +1 .

t' q6 = ——a—-"—a— for § = ‘2"2,...,‘0,"1,...,"S,...,"f. '3
S 8

*.

I3

Al
-L.A ¢ - - + ~ t 6 l
‘!::: qs qG qé or - res e p™P o
' L]
oy

*!
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g
R N
T ror the cycle in Figure 2,

-
P - _ =(=1) =(1) =(-1.17)

X E=l-—=7T x99~ 1

N

.

= -.48101 . ]
s
.Rd By now it should be apparent that one composite back sub-
NS
p stitution scheme will suffice for all cases. The cyc¢le factor

.ot is applied once when, and if, a cycle is encountered on a

"""

'zﬁ backpath.

",

R If the backpaths of £, and t, converge, let join be the
P

N first node on the tk backpath that is also on the fk backpath.
o

e N

N I1f the backpaths converge on a cycle and if the leaving arc pre-
2” ceeds the join on the £, backpath, define join as the first
}Q cycle node encoyntered on the fk backpath. If the backpaths do
N ' e

3y not converge, join = ¢ .

3

w\ Several schemes are available for identifying the join

e efficiently [6). The depth (or number of successors, or pre-

’,

:i order distance) of nodes on the backpaths can be used to avoid

o

X iterating either backpath past the join. Dbepth, the number of

5; nodes on the backpath until a cycle is encountered, can be used
fﬂ to indicate which backpath node is deeper and should be iterated.
’j when both backpath nodes have matching depths, zero depths indi-
i * ‘
}} cate that each backpath is on a root cycle. By remembering the
53

,S first root cycle node on each backpath, further iteration will

N

Pa either reveal the root cycles to be distinct with join = @ , or

., coincident with join defined as above. When both backpath nodes

X have matching depths ygreater than zero, the nodes are compared for
'S

5 oK
&
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equality. A match indicates the join, and a mismatch indicates
that both backpaths should be iterated for another comparison.
If a join is encountered, the backpaths have merged and
either one can be used to complete the ratio test (GENNET
- continues the ty backpath). Wwhen a cycle is encountered the
a values are computed on the first pass around the cycle. On
the second pass around the cycle the a values are computed and
the ratio test is completed.
As the backpaths are iterated, the column transformation

is applied and the resulting terms of transformed column, Zk ’

are used in the ratio test, seeking the minimum ratio:

] A
CP(k) the capacity of the incominy arc,
- MINJ X(ﬁ) for zt > U, node 2,
z
L
LP(IVAR(&;)—X(Q) for zi <o .
. - zz

If a zero ratio is encountered during this process, the ratio

test may be preemptively terminated.

Step §3, Pivot

IF CP(k) is selected as the minimum ratio, then the enter-
ing variable remains nonbasic and is reflected to its opposite
bound. Only the flows X( ) need be updated. To do this, the
backpaths are iterated again and for each node & encountered,

X( ) is reduced by zk x CP(k) .

L
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If a basis exchange is required, an efficient update of
the basis representation must preserve the rooted cycle orien-
tation, updating some entries in P( ) and bD( ). Also, some
flows X( ), and some dual variables U( ), must be changed.
FAC( ) must be established for nodes on newly created cycles.
Some bookkeeping in IVAR( ) and CP( ) may also be required.,

The apparent intricacy of our task is deceiving. Careful
analysis yields an elegant solution. However, the supporting
arguments reguire close attention.

To simplify the explanation, reorient the incoming arc
(fk,tk) to (i,3) or (j,1i) (if necessary) so that the minimum
ratio is on the Jj backpath. Let the enteriny arc (i,j) have
the outgoinyg arc (c¢,d) on its j-backpath. Also, reorient the

outyoing arc (}f necessary) so that the first node encountered

on the j backpath is ¢ . Figure 2 shows a case for which

both reorientations are necessary.

In our example, arc 20, oriented from node 2 to node 11,
leaves the basis and arc 27, oriented from node 5 to node 13
enters. We call the backpath segment from j to arc (c,d) the
j-stem. In Figure 2, i, j, ¢, and d are shown. The j-stem is

composed of nodes 5, 2, 3, and 1ll1. The skeletal update:

a. Reverses the orientation of arcs within the

j-stem; and

FARFL

Orients the entering arc so that it precedes this

-
-

ANR
o
*

redirected path with the same orientation.
If the 1 and 3 backpaths meryge, the node where they

merye is called the join. The join is node 3 in tigure 2.

M MAAAADAL F-Fa A

hh )

SO TN SSU % . e ' AR AR - . - % -
B0 RO ORI,




S et Wttt
N4 A,

[

.;';ﬂ a - "n ,lth ﬂ{..m

N S °,
s

‘-

R AR T A, T e T e T a0 T g, N (Y (s Y T 77, wTe -

1f the leaving arc lies beyond the join on the backpaths
a new cycle is created in the basis exchange. In this case
the portion of the i backpath from node i to the node with
the join as its predecessor is called the i-stem. When node i
is on the j backpath the i-stem is null. In Figure 2, the
i-stem is node 13.

Figure 4 displays the pivot logic to be applied. The
algorithm visits each node affected by the basis update

exactly once. It proceeds up the j-stem one node at a time

visiting the preorder successors of each stem node via IT( ).
If a join is encountered it switches to proceed up the i-stem
one node at a time and then returns to the j-stem. At each
j-stem node, the successors of the next lower stem node have
already been visited. The unvisited successors of the current

stem node can be divided into two groups: the left successors

are the nodes visited in preorder by iterating IT( ) from the
current stem node until the next lower stem node is encountered,
and the right successors of the stem node are the remaining
unvisited nodes reached by further iteration of IT( ). In Figure
2, nodes 8, 14, 12, and 7 are right successors of node 2 and
nodes 10, 13, 1, 6, 15, 9, and 4 are left successors of node 3.
As we climb the i-stem the traversal IT( ) is modified so that
the last of the left successors (if any) points to the first of
the riyght successors and the last of the right successors (if
any) points to the previous stem node. As we climb the j-stem,
the traversal is modified so that the last of the left succes-

sors (if any) points to the first of the riyght successors and

29
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Set first
J-sten node
to visit.

Set first i-stea node
to visit. It has no
left successors.

-

Visit i-stem node

An
unvisited
right successor
nl;.l ns

yes

visit right successor |

Set traversal so that
last of left{ successors
points to first of
right successors and
last of right succes-
sors points back to
previously visited
cycle node.

Define “preor-
der 1ink" to
Yyos | be the preor-
der successor
of the last
i-rtem node.

no

Visit 1-stea node

Visit left successor p—

Figure

unvisited

left successor

remains
?

Visit this left successor

)

Use preorder link to
skip previously visited
i1-stem nodes and their
successors.

An
unvisited
left
remains

?

8kip previously visited

successors lower on stem,

+

—{Visu this right successor

Use preorder link to
skip previously visited
i-ster nodes and their
successors,

An

unvisited

right successor

resains
?

yos

Vas

this the last
J-atem node
?

4, Pivot Traversal Scheme
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of node 2.

the last of the right successors (if any) points to the next
node up the stem (because the update reverses predecessor
orientation for the j-stem).

The immediate switch to the i-stem upon encountering the
join during the j-stem iteration is motivated by a subtle
complication: while visiting the left and right successors
of the j-stem nodes, the nodes on the i-stem and their succes-
ors must be skipped if encountered. Because the i-stem nodes
are successors of the join, visiting the i-stem as soon as the
join is encountered (if one exists) on the j-stem leaves us
with the preorder successor of the last i-stem node visited.
This valuable artifact enables the subsegquent j-stem iteration
to immediately skip all i-stem nodes and their successors should
they be encountered.. This is the key step preserving an effi-
cient one-pass basis update. In Figure 2, i-stem node 13 and
its successor node 1 are successors of the join, node 3. The
preorder successor of the last i-stem node (called the preorder
link in Figure 4) is node 6.

A stem node may have a right successor which is on the
root cycle (with depth zero). The preorder traversal array is
organized so that all successors of a cycle node are encountered
before the next cycle node. This implies that a cycle being
broken by a leaving afc will always be encountered as a right
successor of a stem node. 1In Figure 2, the broken cycle is
encountered as a right successor of node 2; if arc (2,11) were

not the leaving arc, then node 11 would be a preorder successor
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The basic arc flows, X( ), are chanyged as each arc is
visited on the j-stem, and (if a new cycle is created) on the
i-stem. If no cycle is created, X( ) is changed only it the
minimum ratio is nonzero, and then only on the arcs visited on
the backpaths,

During the update, the dual variables must be chanyed so

that

for every basic arc k oriented from node tk to node fk .
With incoming arc (i,j) (reoriented as in Figure 2 so that the
outgyoing arc is on the j-stem), this relationship is retained
for all nodes except for those which the update changes to be
sucéessors of i: (i.e. the nodes on the j-stem and their
successors).

If a cycle is not created, this update proceeds for each
j~stem node and its successors as these nodes are visited in

preorder. tor node s , and associated basic arc & oriented

from s to p(s) ,

U(s) = C(2) + MUL(2) * U(P(s)) ,

'
.'L;nl_{fff{_fr

while the reverse orientation -P(s) to s yields

Al e

U(s) = (C(2) = U(-P(s)))/(-MUL(R)) .
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As in pure networks, the preorder traversal assures that a value
of the dual variable of a predecessor node is always determined
prior to its use by any immediate successor nodes.

When a cycle is created, the dual variable must be deter-
mined for one of the cycle nodes. Then, the dual variables of
the remaining cycle nodes and their descendents can be found
one at a time in preorder traversal.

This key dual variable is computed immediately after the
ratio test predicts ereation of a new cycle (the leaving arc
lies beyond the join on the ratio backpaths). Consider the

current context for a new cycle:

from which the new cycle will be formed (with modified pre-

decessor function p( )):

g ——

p(p(3)) p(3) -p 3
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- The corresponding near-triangular system is:
2 ’ , |
2 3, Popl |
2+ ;
. (u_p,u_p+l,...,u_l) .. = (c_p,c_p+l,...,c_l) l
- a ., b. :
- 3 2 ;
23 a_z P j
f b_p a_, i
< i
‘-t

; where the indexing of ¢ is understood to yield basis arc

- costs (accomplished by indexing with IVAR( ) ),

Y

=, The determination of one term (say, u_,) of the solution

S of this system is induced by modified forward substitution to

be (e.g., [11]):

v,

<

t’ [] 1

w Yop T YT

E

M where (the cycle factor) f 1is defined (again) as

. - b

$
£f =1- n —,

> §=-1 2
X

.

y and ull is the corresponding term of the solution of the strictly

: upper triangular system (omitting the cyclic coefficient b_p ’

j and using forward substitution):
?.

o
-
N
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L u! = —,

. p a—p

' c. - b, u}

u; - ué = 9 aé -1 for § = =p+l,.0.,1
)& J

Note that computation of u!, requires that we traverse the
new cycle in a direction opposite to its predecessor orientation.
o, %

- However, before the update creating the new cycle, the j-stem

exhibits proper orientation for at least part of our work. Thus,

«._\ )
N we can complete the first portion of the forward substitution
" .
. for ull and accumulate the associated partial product component
- of f while iterating the j-stem before the update.
q .
i The remainder of the new cycle is accessed by iterating
'\ .
N the i-stem. As we proceed up the i-stem the remaining product
terms of f are accumulated, and the reverse i-stem path is
j stored (e.g., using U( ) locations, which contain obsolete dual
5
P ¥
d values to be replaced during the imminent update). Reaching
A the join, this stored reverse i-stem path is then accessed to
{l
h complete computation of u!, .
-
" The newly created cycle in Figure 5 is composed of j-stem
- nodes 5, 2, and 3, and i-stem node 13. The dual system becomes
<
% ~u;3 + uj = 45,60
3 + = 15.47
"" u3 uz - .
ro .
1
uz - -74u5 = 26.76
?
o
!'5
-.88u + = 20,67
3 13 Y5 '
x
L 4
j 35
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g which yields

ST Bl .

. - L od
! Uig T 19,0142,

0.3488 (the new cycle factor), and

4
™
"
T

= =-54,5132 (the new dual for node 13).

PN N W ]

Y13

Thus, when a new cycle is to be formed, the new cycle nodes

must be visited once (after the ratio test and prior to the

pivoﬁal update).

The one-pass preorder traversal update can now proceed as
presented in Figure 4, The basis representation arrays are all
modified on-the-fly during this traversal. The update of nodes
on a newly created cycle (if any) includes establishing the new
cycle factor FAC( ). Changes for P( ), D( ), IT( ), IVAR( ),

X( ), and U( ) proceed analogously to the pure network case
(e.g., GNET [6}) with simple modification of generators for X( )
and U( ) to accommodate generalized network coefficients for

basic arcs.

Figure 5 shows the new basis (derived from the example in

|
.
A
-
‘-

Figure 2) before restoring near-triangulation with the update.

A new cycle is to be created and the new cycle factor and a dual . i
solution (for node 13 on the i-stem) are found at this staye. E
Figure 6 displays the new basis restored to near-triangular E
form. At this point, all basis representation arrays are updated i
with the values shown in Figure 7 (data in italics has been E
changed by the update). ;
. I_
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Figure 5.

Column
2 4 12 29 23 10 27 21 17 26 24 7 30 14 13
: -
1 1 1 1 1t .
-2 !
-.9
-.98
-1.18
-1.06
-1.17
-1 11 1 1 1
—
-1.07
-.88 1.0} -.03
1
-.91
“1.0
-1.0 -1.
1

(The entering column is {ialicized)

On

-

e-Tree

(entering column 27, arc (5,13))

New Basis Before Restoring Near-Triangulation
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23 1o 2 17 7 30 14 13 21 26 24 27

1 1 7
-1.18
~1.06 \
40 1 1 1 1 11
-1.07
-9
-1.0
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1
‘n |- " : . -1.17
13 - 10 -3 -t
1 - 1
s | -2 1

A Preorder Near-Triangulation

\
Q:

One-Tree

Figure 6. New Basis Near-Triangulated
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GENNET is designed to exploit intrinsic pure network struc-
ture commonly found embedded in generalized network problems.
Note that when this algorithm is applied to pure network prob-

lems, it automatically adapts to a minor variant of GNET. Of

course, GENNET uses floating point arithmetic operations which
are intrinsically slower on most computers than the pure additive
integer arithmetic of GNET (also, floating point arithmetic
requifes some extra editing for mantissa truncation errors).

To mitigate this disadvantaye, GENNET can test logicélly for

pure network arcs (with unit multipliers) and avoid unneéessary

- floating point multiplication and division operations.

GENNET also employs an automatic dual basis agyregation
refinement ([6],p.26 ff). Explicit values for D( ), U( ) and
IT( ) are maintained only for nodes with successors. An array,
A( f, records for each node the current number of its aggregated
successors. When an aygregated node is encountered in the
priceout, its dual is yenerated from that of the immediate
predecessor of the node. When a backpath ot an enteriny arc
begyins with an aygyyregated node, it is disayygreyated, and when the
leaving arc isolates nodes with no successors, they are
agyregated.

Figure 8 shows the arrays affected by the dual aggregyation
scheme for the basis in Figures 2 and 3. IT( ) indicates ayyre-
yated nodes with U entries, and these nodes have broken outlines
in the one-tree depiction. The priceout of arc (5,13) reyuires
that U(S) be generated using the predecessor dual U(2). Node 5

subsequently starts the j-backpath and is disagyreygated. The

update leaves node 1l with no successors, and thus agyreyated.
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i

é‘ Node Predecessor Depth Traversal Basic Variable Dual Cycle Factor
: P() D( ) IT( ) IVAR() X() u( ) FAC( )
% 1 13 1 5 24 22,860 =-17.026 *

' 2 5 0 8 4 3.883  6.557 0.3488
a 3 -2 0 10 2 118.456 -8.913  0.3488
\ 4 9 2 1 13 0.0  -35.,173 .

2 5 13 0 2 27 2.872 =-27.302  0.3488
> 6 -3 1 15 7 21,308 -48.388 *

’ 7 -2 1 3 10 3.438 -77.192 *

"‘ 8 -2 1 14 12 27.087 -16.634 *

9 -3 1 4 14 9.380 =-38.633 *

u 10 -3 1 6 17 13.150 - 9.330 *

: 11 -3 1 13 21 48.641 =-50,746 *

> 12 -2 1 7 23 2,076 -1.969 *

‘3 13 -3 [ 1 26 9.428 -54,513  0.3488
5 14 -2 1 12 29 22,204 -11.834 *

* 15 -3 1 9 20 16.550 -76.533 *

X

Figure 7. GENNET Basis Representation Arrays
(for Basis in Figure 5)
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Aggregated Basis Representation
(for Figures 2 and 3)

Y
~~~~~~

Aggregated
Traversal Dual Successors
IT( ) u) AC)

0 0
3 47.148 5
13 31.678 3
0 0
0 0
U 0
0 U
0 0
11 9.380 1
0 v
2 4.170 0
0 0
9 11.956 1
0 0
0 0
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significant design alternatives tfor GENNET have each been
evaluated by extensive experimentation at large scale.
trative computational experience is abstracted in this section

for some of the prototype systems tested.

from the
relative

features

have concluded, quite incorrectly,

reported

searchers avoid our mistakes, and may even change some widely

held misconceptions and correct a few translation errors in

5. COMPUTATIONAL EXPERIENCE

style of the paper documenting such work for GNET (6],
performance is reported even for some competitive desiyn

subseyuently rejected for adoption (some readers ot (o]

for GNET were tested).

textbooks.

Among the key issues to be resolved are:

a)

b)

c)

. .\"\f\'; il W A ‘u,‘

Static Storage of Arcs.

in arbitrary sequence, or, to save space,
be stored contiguously by tail node, or by head
node, thereby replacing an arc-length index array by

a (presumably much shorter) hierarchical node-length

entry point array.

Preorder Manipulation of Basis.

mented predecessor index) method [20,22] will be

that only those fteatures

This should help other re-

The arc lists can be stored

1The triple label (auy-

Departing somewhat

LARLCE RS FLEL AP SR AENE SR P AL AL A 5L 25N A0 A S A AL RSt St A e e St TR Rt e A A NGRS
|
i
{

Illus-

arcs can

presented and compared with the preorder traversal

method.

Basis Agygregyation.

An aygyyreyated basis representation

will compete with an explicit representation.
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Vo d) Pricing Schemes. Canaidate list schemes and explicit
;3 arc pricing mechanisms widely used in general linear

T3 proyramming systems will vie with dynamic candidate

.ﬁ . ' | queue disciplines.

: . e) Pure Network Specialization. Generalized network

A algorithms would ideally adapt to pure networks with

ﬁf efficiency comparable to pure network codes.

»y ‘ £) sStarting, Tuning and Tailoring. Which algorithm

i parameters and settings lead to high efticiency for

3 interestinyg classes ot problems? Are heuristics for

ﬁ _ advanced starting solutions worthwhile?

i; g) Generalizations. Advanced teatures and yeneralizations
g will be SUggested.

2 Computational tests have been made with many probleus,

ﬁ including a benchmark suite ot pure network problems yenerated
2 with NETGEN [28], and generallzed network problems yenerated

': by NETGENG [17,18]. Frigure 9 gives some problem characteristics.
> Static arc storaye has been implemented in three ways:

‘; + Contiguous by head node with hierarchical node-

f length entry point array,

>, * Contiyguous by tail node, with hierarchical node-

1« lenyth entry point array, and

n! . + Explicit arcs in arbitrary order.

$ In competition with our basis manipulation usiny preorder
E traversal, a triple label representation oriyinally suyyested ‘
; by E. Johnson [2b] has been i1mplemented tor pure networks and )
S called the auymented predecessor indexing method by Glover,

ﬁ Karney, and Klinyman [20). Glover, Klingman ana Stutz [22]

N

.
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o
: rercent
‘i'\- Problem Nodes sources Sinks Arcs Capacitated
"» e p———— ————— —————— . ———
v NETGEN (Pure)
ot d _— —_—
o NG15 400 200 200 4,500 u
-
2)-’:_; NG18 400 8 60 1,306 20
~ NG1Y 400 8 60 2,443 20
\'3
-: NG22 400 8 6V 1,416 4
3 NG23 400 8 6U 2,836 40
. NG26 400 4 12 1,382 80
A
A NG27* 400 4 12 2,676 8
¥R
:"t NG 28 1,000 50 50 2,900 v
o NG 29 1,000 50 50 3,400 0
.-?:
o NG30 1,000 50 50 4,400 ]
-
LG :
0S
e A NG31 1,000 50 50 4,800 v
" NG 32 1,500 75 75 4,342 U
N ’
2 NG33 1,500 75 75 4,385 0
".":
%2 NG34 1,500 75 75 5,107 v
' NG 35 1,500 75 75 5,730 0
X
,"S';., NETGENG ' (Generalized)
..\1
GTU1 200 100 100 1,500 U
N GTO2 200 100 100 2,000 100
~
5‘, GTU7 300 135 115 4,000 0
[}
: GT12 400 20 100 5,000 U
3 GT15 1,000 5 995 4,000 10U
('
N GT16 1,000 20 1ov 6,000 100
GT18 1,000 30 400 7,000 v
n.\
-p;.\
A Figure 9. Some Benchmark Problems
.:-*;; (Problem NG27 is extensively studied in [6].)
e
Cdl
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report that the method has been extended to yeneralized networks,
but reveal no details.

We have implemented our own efticient version of the triple
label scheme.

The triple label representation uses predecessor, successor,
and brother pointers tor each node. Figure lU0 shows these arrays
for the basis in Figure 2.

To briefly illustrate the triple label scheme for yener-
alized networks, let our situation be the same as tor the pre-
order example (the j-backpath of the incoming arc is arranyed
to include the outgoing arc and to encounter node ¢ first on

that backpath). Let

and the backpath from j to ¢

The skeletal update scheme is:

" N A SO A R A S
A &(I {H e e .\ A&‘.‘{“L..Ll.‘:a _‘.L\A\ l,'l‘,..‘:.f:‘n':l' *
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[N
\‘* Node Predecessor successor Brother
- R ) sC ) B( )
Y
%: 1 13 0 0
o 2 3 11 10 .
P~
3 11 2 0
P2
.J
4 9 0 0
-t
5 -2 0 8
i 6 -3 0 15
b~

< w

- 7 -2 v v
o 8 -2 v 14
N &

he) 9 -3 4 v
3 10 - -3 0 13
&

11 -2 3 5

&? _ 12 -2 v 7
a

3 13 -3 1 b
*.

14 -2 v 12

- 15 3 0 9
'v‘. -

‘-F
s
M

.‘_:
o
',;';f Figure 1lU. Triple Label Basis Representation
'-f; (for Figure 2)
o .
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l. Set § =d
2. If S(vg_ ;) = v, GO to Step 3
Otherwise, if possible, find a node v* -
such that P(v*) = V-1
and B(v*) = Vo
and set B(v*) « B(VG)’ Go to step 4
3. set S(ve ) « Blvg),
4, Set P(VG) € Ve
B(vc) « s(v6+1).

SVgay) * Vi
5. Set § « §-1,
Then, if vg ., # Cc, Go to Step 2,

"Otherwise, Stop.

(step 2 exhibits the key extension tor generalized networks of
the pure network triple label scheme.)

These tive steps reverse the orientation ot all arcs on
the )-stem and orient'(vd+l,vd) so that it beyins this redirected
path. All other triple Iabel-OPerations are obvious alterations
of the preorder traversal procedure.

A static candidate list pricing strateyy (e.y., [17,18,31]))

an explicit arc pricing method reminiscent of yeneral linear

proyramming systems, and a dynamic candigate gueue [b] have been

tested.
The (LI’LZ) candidate list procedure is a simple strategyy.

Nodes with leaving arcs (or entering arcs for contiyuous head

node arc lists) are sequentially priced, placinyg the most nega-
tive candidate (it any) trom each node on the candidate list :
a7 T
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until L2 candidates have been located (arbitrarily organized arc
lists require explicit arc pricing). kntering arcs are chosen
from the candidate list by most negative reduced cost until Ll
iterations have heen carried out, or until all list entries have
non-negative reduced costs. Arcs with non-negative reduced costs
are dropped from the list and replaced by continuing to scan the
nodes until L2 candidates have been tound. It an exhaustive pass
through the nodes results in less than LZ candidgates, then an
optional closing gambit sets LZ egqual to the actual candidates
found, and reduces Ll by half unless Ll eyuals one. Glover,
Hultz, Klingman and sStutz [17,18] report (Ll’Lz) of (5,1U) to be
best in their work.,

The candidate quéue is a dynamic list of interesting arcs
and nodes, scanned in a cyclic manner. The enterinyg arc is
selected from the gqueue by pricing NNE entries; if an interesting
node is encountered it is replaced by its best-priced enteriny
arc (or leaving arc for contiguous tail node arc lists). Arcs
pricing favorably are retained in the queue. When the end of
gueue 1is encountered, ﬁhe queue is refreshed by pricing IPG nodes
in a cyclic general arc scan. bLuring an opening yambit of NNS
pivots, the nodes incident to the enteriny basic arc are adaed to
the gyueue. There is no closing yambit, since the queue automa-
tically shrinks and finally collapses at optimality. Bradley,
Brown, and Graves [6] suygest NNE = 32, NN5 = 3m/4 and
1PG = m/1lU + 1 for pure network problems with m nodes.

A rule to break ties in the ratio test which guarantees

finite convergence for pure transshipment problems has been

48
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developed by Cunningham {12]. Bbradley, Brown and Graves [6]
show that the conditions necessary for finite convergence are
naturally satisfied by GNET on over 90% of its degenerate pivots.
Elam, Glover and Klingman [15] have observed that the results of
Cunningham can only be extended to the yenera.ized network case
when the multipliers are positive. Wwe have not used Cunningham's
modification.

Bland [4] presents a class of restrictions of pricinygy and
ratio tests for ygeneral linear proygrams which relies exclusively

on primal simplex representation and guarantees finite conver-

gence. These rules are easily moditied to produce an efticient

finite simplex algorithm. The modification interferes with et-
fective pricing strategies only during degenerate pivot seguences,
and the restrictions increase in severity only with the number of
pivots in that sequence. However, during a degenerate pivot se-
guence restriction records must be accumulated (e.g., a list with
each incominyg variable in one ot our schemes). This record is
naturally accommodated by the dynamic candidate yueue, but not by
a static candidate listlor explicit pricing. NoO purpose is
served by reporting such unbalanced competition.

A starting strateygyy has also been tested in conjunction with

pricing alternatives. A straigyhttforward starting method ex-
amines each node with sﬁpply (or demand for contiguous arc stor-
age by head node) and assigns as much flow as possible to its
least, cogt leaviny (entering) arc. The procedure stops when an

exhaustive pass of the nodes makes no additional flow assiynments.
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The starting solution achieved is not necessarily feasible.
(E.g., "exhaustive pass sequential source minimum start" ([18].)

Artificial arcs are driven from the basis in all experiments

using a Big-M method (e.g., [6]). This choice is principally
motivated by the comparability of competitive tests between pure
and generalized network codes on pure and ygeneralized network
problems. (A two-phase method is employed in production use,)
Choosiny the best Biy-M value is a bit tricky. The smallest
Big-M value which yields a feasible optimal solution (if one
exists) is best in our experience. Small Big-M values may téil
to produce feasibility, and large values intlict numerical
difticulties. 1In practice, a deftault value is used and an
automatic restart recbvery is applied if an inteasible solution
persists, If a restart with a higher Big-M value tai;s_to‘ |

reduce the total inteasibility, a terminally inteasible solution

is declared. Figures 11 and 12 indicate the multiple ot maximum
absolute arc cost used for Big-M in each problem.

Computational tests have been performed on various computer.
systems. The times reported here are accurate to the precision‘
aisplayed for IBM 370/le68-3 using the FORTRAN H compiler with |
OPT(2). Solution times exclude input/output overhead. GENNET
uses double precision (IBM REAL*8) arithmetic for tloatinyg point
operations and storagye. |

o solution times are yiven in Figure 1l for the pure network
e test problems. Pertormance is yiven tor three pure network codes
(two versions ot GNET and SUPERK) as well as tor several repre-

sentative gyeneralized network prototype systems. Wwe can thus

N
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compare the best generalized network scheme with the best pure
network code exhibiting equivalent features (GNET, or its

aggregated successor variant [6]).

The times for SUPERK also provide the only available objec-

: tive means ftor comparison of our implementations to that ot
Glover, Hultz, Klingman and Stutz [l4]; they report that their
generalized network code, NEITG, is about as tast as SUPERK (a

fast out-of-kilter code for pure networks (3)) when both are used

Eahd Ao bt _qums &

to solve pure networks. Using their version of SUPERK on our
computer we have shown that our implementation of NETG (called

TLA in our nomenclature) is at least as efficient as their claims

for NETG.
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However, in these tests TLA is substantially outperformed by
the alternate systems. For the pure network problems, best
performance is achieved by (Figure 11):

Contiguous arcs by head node,

Candidate queue pricing,

Preorder traversal, and

Aggregated successors.
TLA does not incorporate any of these features, and is ygenerally
less than half as fast as competitors.

Although GENNET (HQPX) should in theory rival GNET (HQPX)
with pure network problems, the overhead of testing in GENNET
for more general basis structure and the additional computa-
tional burden of floating point arithmetic exact a pertormance
penalty of about 15 percent.

‘ Figure 12 shows solution times for the generalized trans-
shipment network problems. Note that the starting strategy helps
candidate list performance and hinders the candidate queue.
Arranging arcs contiguously by head node dominates both tail
node and explicit arc list designs. The candidate gueue pro-
vides good performance if accompanied with contiguous arcs by
head node. Preorder traversal continues to provide better
performance than triple label representation in all desiyn
contexts. Aggregated successors offer a pronounced advantage.

GENNET (HQPX) provides best overall pertormance. It

offers a decided advantaye on problems with many more sinks

than sources, a situation common in real life.
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Figure 13 displays performance of GENNET(GN, HPQX) applied

to a set of (GN) problems extracted from a collection of real-
world LP/MIP models [lU]. Despite the slight additional floating
point arithmetic required to solve (GN), GENNET solves these
problems much faster than would be predicted by experience with
randomly generated GT problems. Tuning of the pricing mechanism

greatly enhances this difference.

Problem Nodes Arcs Seconds Pivots
AIRLP 170 3,040 2,62 420
CUAL 170 3,923 1.80 471
STEEL 422 1,279 «39 499
FUAM ' 951 4,953 3.74 1,258
ODSAS (GN) 1,431 4,615 3.22 1,427
ALUMINUM(GN) 2,178 7,216 3.57 2,794
REFINE(GN) 3,110 6,617 4.72 3,322
FOOD(GN) 3,716 13,907 12,11 7,004

(Big-M = 10 x largest cost coefficient)

Figure 13. (GN) Test Problems
(GN rows extracted from real-world LP/MIP models [1l0]
with null columns deleted and slack arcs added.)
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Close scrutiny of solution trajectories lends some insight

AR Y -

into GENNET's good performance. GENNET has a one-pass itera-

tion unless a cycle is formed; a cycle is formed on only 5-to-24

percent of all iterations for these problem sets--5-to-1U percent

5 for most problems. Also, the explicit (non-aggregated) subset of .

the nodes is remarkably small, seldom numberinyg much more than

-

the number of source nodes. Finally, the length of backpaths is X

P Y

quite short, averaging about the number of echelons (path length

from sources to sinks) in the model, or just more than 2 in these

problems. .
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6. CONCLUSION

The generalized network system GENNET is small, fast and
easy to modify. Adaptati&ns héve already included using GENNET
in a system to solve generalized networks with complicating side
constraints an/or complicating variables (McBride [3VU]). GENNET
has also been incorporated in a powertful microcomputer-based
network optimization system by Brown, Dutft and Finley [7,16)])
using an APPLE-II host and PASCAL implementation languagye.
Modifications for mixed integer generalized networks have also
been tested (though not with care sufticient to warrant
publication at this time). GENNET has proven to be a worthy
successor of GNET [6].

Preorder traversal is appealing for its mathematical and
implementation elegance, and has proven to be efficient and
flexible for generalized networks (as it was for pure networks).
(Adolphson and Heum [1] have also suspected this and have in-
dependently pursued this avenue.)

Experience shows.that the GENNET design pertorms much more
efficiently on real models than on randomly generated test
problems ot nominally equivalent size; this desiyn is also tech-
nically and philosophically compatible with the various systems
we have devised for soiving other more yeneral classes ot

optimization models.

57

R T R N . e S A S S SO IR RS I e\ AT



AL La Vg S Ca W R W W T P N, R IdL Ly O P P B ¢ W e T et a ld e VoW o, Ca®aMUL™ 0P a®e® g e el it P e rarat v,
L A s e N N e N e N N L L v e L E T L S e e,

-

o a
22s%s

PRSIV - 30

-
.

The FORTRAN programs GENNET--(GT) and (GN) versions~--

(Copyright 1984) are licensed to researchers for a nominal

X, KA

4.4 -

charge on an exclusive use basis. For further information write

o

IR

the authors via P.0O. Box 1832, Alexandria, Virginia, 22313, USA.
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